URI | http://purl.tuc.gr/dl/dias/9BEA2A38-AFF2-49E1-B344-30E2C7BD34B5 | - |
Γλώσσα | en | - |
Μέγεθος | 11 pages | en |
Τίτλος | Motorway flow optimization in presence of vehicle automation and communication systems | en |
Δημιουργός | Roncoli Claudio | en |
Δημιουργός | Papamichail Ioannis | en |
Δημιουργός | Παπαμιχαηλ Ιωαννης | el |
Δημιουργός | Papageorgiou Markos | en |
Δημιουργός | Παπαγεωργιου Μαρκος | el |
Εκδότης | National Technical University of Athens | en |
Περιγραφή | The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement n. 321132, project TRAMAN21. | en |
Περίληψη | This paper describes a novel approach for defining optimal strategies in motorway traffic flow control, considering that a portion of vehicles are equipped with vehicle automation and communication systems. An optimisation problem, formulated as a Quadratic Programming (QP) problem, is developed with the purpose of minimising traffic congestion. The proposed problem is based on a first-order macroscopic traffic flow model able to capture the lane changing and the capacity drop phenomena. An application example demonstrates the achievable improvements in terms of the Total Time Spent if the vehicles travelling on the motorway are influenced by the control actions computed as a solution of the optimisation problem. | en |
Τύπος | Πλήρης Δημοσίευση σε Συνέδριο | el |
Τύπος | Conference Full Paper | en |
Άδεια Χρήσης | http://creativecommons.org/licenses/by-nc-nd/4.0/ | en |
Ημερομηνία | 2014-10-12 | - |
Ημερομηνία Δημοσίευσης | 2014 | - |
Θεματική Κατηγορία | Motorway traffic control | en |
Θεματική Κατηγορία | Traffic flow optimisation | en |
Θεματική Κατηγορία | Quadratic programming | en |
Βιβλιογραφική Αναφορά | C. Roncoli, M. Papageorgiou, I. Papamichail, "Motorway flow optimization in presence of vehicle automation and communication systems," in Proceedings of the 1st International Conference on Engineering and Applied Science Optimization (OPT-i), 2014, pp. 519-529. | el |