Ιδρυματικό Αποθετήριο [SANDBOX]
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Maximally sparse convex estimation and equalization

Lourakis Georgios

Απλή Εγγραφή


URIhttp://purl.tuc.gr/dl/dias/D32BECEF-6434-45CC-B3DF-FF46E50A8034-
Αναγνωριστικόhttps://doi.org/10.26233/heallink.tuc.22834-
Γλώσσαen-
Μέγεθος78 pagesen
ΤίτλοςMaximally sparse convex estimation and equalizationen
ΔημιουργόςLourakis Georgiosen
ΔημιουργόςΛουρακης Γεωργιοςel
Συντελεστής [Επιβλέπων Καθηγητής]Liavas Athanasiosen
Συντελεστής [Επιβλέπων Καθηγητής]Λιαβας Αθανασιοςel
Συντελεστής [Μέλος Εξεταστικής Επιτροπής]Digalakis Vasilisen
Συντελεστής [Μέλος Εξεταστικής Επιτροπής]Διγαλακης Βασιληςel
Συντελεστής [Μέλος Εξεταστικής Επιτροπής]Bletsas Aggelosen
Συντελεστής [Μέλος Εξεταστικής Επιτροπής]Μπλετσας Αγγελοςel
ΕκδότηςΠολυτεχνείο Κρήτηςel
ΕκδότηςTechnical University of Creteen
Ακαδημαϊκή ΜονάδαTechnical University of Crete::School of Electronic and Computer Engineeringen
Ακαδημαϊκή ΜονάδαΠολυτεχνείο Κρήτης::Σχολή Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστώνel
ΠερίληψηSparse multipath channels are wireless links commonly found in communication systems such as High Frequency radio channels, horizontal and vertical underwater acoustic channels and terrestrial broadcasting channels for High Definition Television. Their impulse responses are characterized by a few significant terms that are widely separated in time. With high speed transmission, the length of a sampled sparse channel can reach hundreds of symbol interval. Thus, the amount of Intersymbol Interference (ISI) at the receiver is very high. Consequently, the presence of an ISI mitigating structure at the receiver, such as the Decision Feedback Equalizer (DFE) is essential. Due to the sparse impulse responses of these channels, traditional estimation techniques such as Least Squares (LS) result in over-parameterization and thus poor performance of the estimator. Also, classical equalizers become too complex for tackling these channels. The problem of estimating and equalizing sparse multipath channels is considered in this thesis. We formulate the sparse channel estimation and the computation of the sparse DFE filters as sparse approximation problems. A usual approach in sparse approximation problems is regularization with an l_1 norm penalty term and usage of convex optimization techniques in order to acquire a solution. Other sparsity promoting penalty functions are available, but the l_1 norm has the advantage to be a convex function, making the l_1 norm regularized approximation problem a convex one. When a problem is formulated as a convex optimization problem, it can be solved by very fast, efficient and reliable algorithms. In order to achieve sparser solutions and still gain from the benefits of the convex optimization theory, the Maximally Sparse Convex (MSC) algorithm utilizes a non-convex regularization term, that promotes sparsity more strongly than the l_1 norm, but chosen such that the total cost function remains convex.en
ΤύποςΔιπλωματική Εργασίαel
ΤύποςDiploma Worken
Άδεια Χρήσηςhttp://creativecommons.org/licenses/by/4.0/en
Ημερομηνία2014-10-06-
Ημερομηνία Δημοσίευσης2014-
Θεματική ΚατηγορίαConvex optimizationen
Θεματική ΚατηγορίαCommunication systems, Wirelessen
Θεματική ΚατηγορίαWireless data communication systemsen
Θεματική ΚατηγορίαWireless information networksen
Θεματική ΚατηγορίαWireless telecommunication systemsen
Θεματική Κατηγορίαwireless communication systemsen
Θεματική Κατηγορίαcommunication systems wirelessen
Θεματική Κατηγορίαwireless data communication systemsen
Θεματική Κατηγορίαwireless information networksen
Θεματική Κατηγορίαwireless telecommunication systemsen
Βιβλιογραφική ΑναφοράGeorgios Lourakis, "Maximally sparse convex estimation and equalization", Diploma Work, School of Electronic and Computer Engineering, Technical University of Crete, Chania, Greece, 2014en
Βιβλιογραφική ΑναφοράΓεώργιος Λουράκης, "Maximally sparse convex estimation and equalization", Διπλωματική Εργασία, Σχολή Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών, Πολυτεχνείο Κρήτης, Χανιά, Ελλάς, 2014el

Διαθέσιμα αρχεία

Υπηρεσίες

Στατιστικά