URI | http://purl.tuc.gr/dl/dias/AC8B7DCE-3168-4791-9954-BF8B51C56E06 | - |
Identifier | https://doi.org/10.26233/heallink.tuc.20735 | - |
Language | el | - |
Extent | 65 σελίδες | el |
Title | Πρόβλεψη φαρμακευτικών πωλήσεων με τη χρήση τεχνητών νευρωνικών δικτύων και νευρο-ασαφών συστημάτων | el |
Creator | Brokalakis Iosif | en |
Creator | Μπροκαλακης Ιωσηφ | el |
Contributor [Thesis Supervisor] | Atsalakis Georgios | en |
Contributor [Thesis Supervisor] | Ατσαλακης Γεωργιος | el |
Contributor [Committee Member] | Zopounidis Konstantinos | en |
Contributor [Committee Member] | Ζοπουνιδης Κωνσταντινος | el |
Contributor [Committee Member] | Atsalakis Georgios | en |
Contributor [Committee Member] | Ατσαλακης Γεωργιος | el |
Publisher | Technical University of Crete | en |
Publisher | Πολυτεχνείο Κρήτης | el |
Academic Unit | Technical University of Crete::School of Management and Production Engineering | en |
Academic Unit | Πολυτεχνείο Κρήτης::Σχολή Μηχανικών Παραγωγής και Διοίκησης | el |
Content Summary | Τα τελευταία χρόνια οι φαρμακευτικές πωλήσεις στην Ελλάδα έχουν υποστεί σημαντική μείωση. Συνέπεια αυτής εξέλιξης αποτελεί ο σκεπτικισμός με τον οποίο αντιμετωπίζουν μεγάλες επιχειρήσεις της φαρμακευτικής βιομηχανίας μελλοντικές τους επενδύσεις. Η ανάγκη για μακροπρόθεσμες και ακριβείς προβλέψεις ως εργαλείο στρατηγικού προγραμματισμού αυξάνει. Στόχος της παρούσας διπλωματικής εργασίας αποτελεί ο σχεδιασμός ενός μοντέλου μακροπρόθεσμης (πολλών βημάτων μπροστά) πρόβλεψης για τις συνολικές πωλήσεις της φαρμακευτικής βιομηχανίας. Προς αυτήν την κατεύθυνση διερευνούμε μεθοδολογίες από τον τομέα της Τεχνητής Νοημοσύνης. Τα Εμπρόσθια Νευρωνικά Δίκτυα και το Προσαρμοστικό Νεύρο-Ασαφές Σύστημα Εξαγωγής Συμπεράσματος υιοθετήθηκαν. Οι συγκεκριμένες τεχνικές έχουν αποδείξει την ανωτερότητά τους έναντι των στατιστικών μεθόδων σε προβλήματα πρόβλεψης ενός βήματος μπροστά. Ωστόσο, η μακροπρόθεσμη πρόβλεψη αποτελεί πρόκληση για τους ερευνητές. Η υλοποίηση των μοντέλων βασίστηκε στα δεδομένα των τελευταίων 14 ετών, τα οποία διατίθενται στην ιστοσελίδα του Εθνικού Οργανισμού Φαρμάκων. Τα αποτελέσματα των δύο μεθοδολογιών συγκρίθηκαν και αξιολογήθηκαν με στόχο τον εντοπισμό του κατάλληλου μοντέλου για το συγκεκριμένο πρόβλημα. | el |
Type of Item | Διπλωματική Εργασία | el |
Type of Item | Diploma Work | en |
License | http://creativecommons.org/licenses/by/4.0/ | en |
Date of Item | 2014-09-09 | - |
Date of Publication | 2014 | - |
Subject | Artificial neural networks | en |
Subject | Nets, Neural (Computer science) | en |
Subject | Networks, Neural (Computer science) | en |
Subject | Neural nets (Computer science) | en |
Subject | neural networks computer science | en |
Subject | artificial neural networks | en |
Subject | nets neural computer science | en |
Subject | networks neural computer science | en |
Subject | neural nets computer science | en |
Bibliographic Citation | Ιωσήφ Μπροκαλάκης, "Πρόβλεψη φαρμακευτικών πωλήσεων με τη χρήση τεχνητών νευρωνικών δικτύων και νευρο-ασαφών συστημάτων", Διπλωματική Εργασία, Σχολή Μηχανικών Παραγωγής και Διοίκησης, Πολυτεχνείο Κρήτης, Χανιά, Ελλάς, 2014 | el |