Institutional Repository [SANDBOX]
Technical University of Crete
EN  |  EL

Search

Browse

My Space

White-Basilisk: A hybrid model for code vulnerability detection

Lamprou Ioannis

Simple record


URIhttp://purl.tuc.gr/dl/dias/CB5DA30D-9C17-453E-BE3E-338ACE6C619B-
Identifierhttps://doi.org/10.26233/heallink.tuc.104535-
Languageen-
Extent74 pagesen
TitleWhite-Basilisk: A hybrid model for code vulnerability detectionen
TitleWhite-Basilisk: Ένα υβριδικό μοντέλο για την ανίχνευση ευπαθειών κώδικα el
CreatorLamprou Ioannisen
CreatorΛαμπρου Ιωαννηςel
Contributor [Thesis Supervisor]Ioannidis Sotiriosen
Contributor [Thesis Supervisor]Ιωαννιδης Σωτηριοςel
Contributor [Committee Member]Dollas Apostolosen
Contributor [Committee Member]Δολλας Αποστολοςel
Contributor [Committee Member]Chalkiadakis Georgiosen
Contributor [Committee Member]Χαλκιαδακης Γεωργιοςel
PublisherΠολυτεχνείο Κρήτηςel
PublisherTechnical University of Creteen
Academic UnitTechnical University of Crete::School of Electrical and Computer Engineeringen
Academic UnitΠολυτεχνείο Κρήτης::Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστώνel
DescriptionΜεταπτυχιακή Διατριβή που υποβλήθηκε στη σχολή ΗΜΜΥ του Πολ. Κρήτης για την πλήρωση προϋποθέσεων λήψης του Μεταπτυχιακού Διπλώματος Ειδίκευσης.el
Content SummaryThe proliferation of software vulnerabilities presents a significant challenge to cybersecurity, necessitating more effective detection methodologies. We introduce White-Basilisk, a novel approach to vulnerability detection that demonstrates superior performance while challenging prevailing assumptions in AI model scaling. Utilizing an innovative architecture that integrates Mamba layers, linear self-attention, and a Mixture of Experts framework, White-Basilisk achieves state-of-the-art results in vulnerability detection tasks with a parameter count of only 200M. The model's capacity to process sequences of unprecedented length enables comprehensive analysis of extensive codebases in a single pass, surpassing the context limitations of current Large Language Models (LLMs). White-Basilisk exhibits robust performance on imbalanced, real-world datasets, while maintaining computational efficiency that facilitates deployment across diverse organizational scales. This research not only establishes new benchmarks in code security but also provides empirical evidence that compact, efficiently designed models can outperform larger counterparts in specialized tasks, potentially redefining optimization strategies in AI development for domain-specific applications.en
Content SummaryΗ διάδοση των ευπαθειών λογισμικού αποτελεί σημαντική πρόκληση για την κυβερνοασφάλεια, καθιστώντας αναγκαία την ανάπτυξη αποτελεσματικότερων μεθοδολογιών ανίχνευσης. Παρουσιάζουμε το White-Basilisk, μια καινοτόμο προσέγγιση στην ανίχνευση ευπαθειών που επιδεικνύει ανώτερη απόδοση, αμφισβητώντας παράλληλα τις επικρατούσες υποθέσεις στην κλιμάκωση μοντέλων AI. Χρησιμοποιώντας μια καινοτόμο αρχιτεκτονική που ενσωματώνει Mamba layers, linear self-attention, και ένα πλαίσιο Mixture of Experts, το White-Basilisk επιτυγχάνει κορυφαία αποτελέσματα σε εργασίες ανίχνευσης ευπαθειών με μόλις 200M παραμέτρους. Η ικανότητα του μοντέλου να επεξεργάζεται ακολουθίες πρωτοφανούς μήκους επιτρέπει την ολοκληρωμένη ανάλυση εκτεταμένων βάσεων κώδικα σε ένα πέρασμα, ξεπερνώντας τους περιορισμούς πλαισίου των τρεχόντων Large Language Models (LLMs). Το White-Basilisk επιδεικνύει ισχυρή απόδοση σε μη ισορροπημένα σύνολα δεδομένων του πραγματικού κόσμου, διατηρώντας παράλληλα υπολογιστική αποδοτικότητα που διευκολύνει την ανάπτυξη σε διάφορες οργανωτικές κλίμακες. Αυτή η έρευνα όχι μόνο θέτει νέα σημεία αναφοράς στην ασφάλεια κώδικα, αλλά παρέχει επίσης εμπειρικά στοιχεία ότι τα συμπαγή, αποδοτικά σχεδιασμένα μοντέλα μπορούν να ξεπεράσουν μεγαλύτερα αντίστοιχά τους σε εξειδικευμένες εργασίες, επαναπροσδιορίζοντας πιθανώς τις στρατηγικές βελτιστοποίησης στην ανάπτυξη AI για εφαρμογές συγκεκριμένου τομέα.el
Type of ItemΜεταπτυχιακή Διατριβήel
Type of ItemMaster Thesisen
Licensehttp://creativecommons.org/licenses/by-nc-sa/4.0/en
Date of Item2025-09-05-
Date of Publication2025-
SubjectΤεχνητή Νοημοσύνηel
SubjectArtificial Intelligenceen
SubjectCybersecurityen
SubjectΚυβερνοασφάλειαel
SubjectCode vulnerability detectionen
SubjectΑνίχνευση ευπαθειών κώδικαel
SubjectLarge Language Models (LLMs)en
Bibliographic CitationIoannis Lamprou, "White-Basilisk: A hybrid model for code vulnerability detection", Master Thesis, School of Electrical and Computer Engineering, Technical University of Crete, Chania, Greece, 2025en
Bibliographic CitationΙωάννης Λάμπρου, "White-Basilisk: Ένα υβριδικό μοντέλο για την ανίχνευση ευπαθειών κώδικα ", Μεταπτυχιακή Διατριβή, Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών, Πολυτεχνείο Κρήτης, Χανιά, Ελλάς, 2025el

Available Files

Services

Statistics