Institutional Repository [SANDBOX]
Technical University of Crete
EN  |  EL

Search

Browse

My Space

Brainstorm-DUNEuro: an integrated and user-friendly Finite Element Method for modeling electromagnetic brain activity

Medani Takfarinas, Garcia-Prieto Juan, Tadel Francois, Antonakakis Marios, Erdbrugger Tim, Höltershinken Malte, Mead Wayne, Schrader Sophie, Joshi Anand A., Engwer Christian, Wolters Carsten H., Mosher John C., Leahy Richard M.

Simple record


URIhttp://purl.tuc.gr/dl/dias/D680D84A-8E16-4EBB-A0BB-8A4481B164D2-
Identifierhttps://doi.org/10.1016/j.neuroimage.2022.119851-
Identifierhttps://www.sciencedirect.com/science/article/pii/S1053811922009727-
Languageen-
Extent13 pagesen
TitleBrainstorm-DUNEuro: an integrated and user-friendly Finite Element Method for modeling electromagnetic brain activityen
CreatorMedani Takfarinasen
CreatorGarcia-Prieto Juanen
CreatorTadel Francoisen
CreatorAntonakakis Mariosen
CreatorΑντωνακακης Μαριοςel
CreatorErdbrugger Timen
CreatorHöltershinken Malteen
CreatorMead Wayneen
CreatorSchrader Sophieen
CreatorJoshi Anand A.en
CreatorEngwer Christianen
CreatorWolters Carsten H.en
CreatorMosher John C.en
CreatorLeahy Richard M.en
PublisherElsevieren
Content SummaryHuman brain activity generates scalp potentials (electroencephalography – EEG), intracranial potentials (iEEG), and external magnetic fields (magnetoencephalography – MEG). These electrophysiology (e-phys) signals can often be measured simultaneously for research and clinical applications. The forward problem involves modeling these signals at their sensors for a given equivalent current dipole configuration within the brain. While earlier researchers modeled the head as a simple set of isotropic spheres, today's magnetic resonance imaging (MRI) data allow for a detailed anatomic description of brain structures and anisotropic characterization of tissue conductivities. We present a complete pipeline, integrated into the Brainstorm software, that allows users to automatically generate an individual and accurate head model based on the subject's MRI and calculate the electromagnetic forward solution using the finite element method (FEM). The head model generation is performed by integrating the latest tools for MRI segmentation and FEM mesh generation. The final head model comprises the five main compartments: white-matter, gray-matter, CSF, skull, and scalp. The anisotropic brain conductivity model is based on the effective medium approach (EMA), which estimates anisotropic conductivity tensors from diffusion-weighted imaging (DWI) data. The FEM electromagnetic forward solution is obtained through the DUNEuro library, integrated into Brainstorm, and accessible with either a user-friendly graphical interface or scripting. With tutorials and example data sets available in an open-source format on the Brainstorm website, this integrated pipeline provides access to advanced FEM tools for electromagnetic modeling to a broader neuroscience community.en
Type of ItemPeer-Reviewed Journal Publicationen
Type of ItemΔημοσίευση σε Περιοδικό με Κριτέςel
Licensehttp://creativecommons.org/licenses/by/4.0/en
Date of Item2025-07-17-
Date of Publication2023-
SubjectHead modelingen
SubjectElectrophysiologyen
SubjectEEG/MEG/SEEGen
SubjectFinite element methoden
SubjectForward modelen
SubjectBrainstormen
SubjectDUNEuroen
Bibliographic CitationT. Medani, J. Garcia-Prieto, F. Tadel, M. Antonakakis, T. Erdbrügger, M. Höltershinken, W. Mead, S. Schrader, A. Joshi, C. Engwer, C. H. Wolters, J. C. Mosher, and R. M. Leahy, “Brainstorm-DUNEuro: an integrated and user-friendly Finite Element Method for modeling electromagnetic brain activity,” NeuroImage, vol. 267, Feb. 2023, doi: 10.1016/j.neuroimage.2022.119851.en

Available Files

Services

Statistics