URI | http://purl.tuc.gr/dl/dias/0CBDC945-F21A-4865-8B9D-21638F9F146A | - |
Identifier | https://doi.org/10.1080/23746149.2023.2202331 | - |
Identifier | https://www.tandfonline.com/doi/full/10.1080/23746149.2023.2202331 | - |
Language | en | - |
Extent | 24 pages | en |
Title | Topological data analysis and machine learning | en |
Creator | Leykam Daniel | en |
Creator | Angelakis Dimitrios | en |
Creator | Αγγελακης Δημητριος | el |
Publisher | Taylor & Francis | en |
Description | This research is supported by the EU HORIZON—Project 101080085 — QCFD. | en |
Content Summary | Topological data analysis refers to approaches for systematically and reliably computing abstract ‘shapes’ of complex data sets. There are various applications of topological data analysis in life and data sciences, with growing interest among physicists. We present a concise review of applications of topological data analysis to physics and machine learning problems in physics including the unsupervised detection of phase transitions. We finish with a preview of anticipated directions for future research. | en |
Type of Item | Ανασκόπηση | el |
Type of Item | Review | en |
License | http://creativecommons.org/licenses/by/4.0/ | en |
Date of Item | 2025-05-29 | - |
Date of Publication | 2023 | - |
Subject | Machine learning | en |
Subject | Strongly correlated quantum systems | en |
Subject | Persistent homology | en |
Subject | Phase transition | en |
Subject | Quantum computing | en |
Subject | Condensed matter physics | en |
Subject | Topological phase | en |
Bibliographic Citation | D. Leykam and D. G. Angelakis, “Topological data analysis and machine learning,” Adv. Phys.: X, vol. 8, no. 1, Dec. 2023, doi: 10.1080/23746149.2023.2202331. | en |