Institutional Repository [SANDBOX]
Technical University of Crete
EN  |  EL

Search

Browse

My Space

Stabilization of a class of large-scale systems of linear hyperbolic PDEs via continuum approximation of exact backstepping kernels

Humaloja Jukka-Pekka Gabriel, Bekiaris-Liberis Nikolaos

Simple record


URIhttp://purl.tuc.gr/dl/dias/DF094E9C-715D-4FAD-B5A0-B1BA3535141E-
Identifierhttps://doi.org/10.1109/TAC.2025.3550074-
Languageen-
Extent16 pagesen
TitleStabilization of a class of large-scale systems of linear hyperbolic PDEs via continuum approximation of exact backstepping kernelsen
CreatorHumaloja Jukka-Pekka Gabrielen
CreatorHumaloja Jukka-Pekka-Gabrielel
CreatorBekiaris-Liberis Nikolaosen
CreatorΜπεκιαρης-Λυμπερης Νικολαοςel
PublisherInstitute of Electrical and Electronics Engineersen
DescriptionFunded by the European Union (ERC, C-NORA, 101088147). Views and opinions expressed are however those of the authors only and do not necessarily reflect those of the European Union or the European Research Council Executive Agency. Neither the European Union nor the granting authority can be held responsible for them.en
Content SummaryWe establish that stabilization of a class of linear, hyperbolic partial differential equations (PDEs) with a large (nevertheless finite) number of components, can be achieved via employment of a backstepping-based control law, which is constructed for stabilization of a continuum version (i.e., as the number of components tends to infinity) of the PDE system. This is achieved by proving that the exact backstepping kernels, constructed for stabilization of the large-scale system, can be approximated (in certain sense such that exponential stability is preserved) by the backstepping kernels constructed for stabilization of a continuum version (essentially an infinite ensemble) of the original PDE system. The proof relies on construction of a convergent sequence of backstepping kernels that is defined such that each kernel matches the exact backstepping kernels (derived based on the original, large-scale system), in a piecewise constant manner with respect to an ensemble variable; while showing that they satisfy the continuum backstepping kernel equations. We present a numerical example that reveals that complexity of computation of stabilizing backstepping kernels may not scale with the number of components of the PDE state, when the kernels are constructed on the basis of the continuum version, in contrast to the case in which they are constructed on the basis of the original, large-scale system. In addition, we formally establish the connection between the solutions to the large-scale system and its continuum counterpart. Thus, this approach can be useful for design of computationally tractable, stabilizing backstepping-based control laws for large-scale PDE systems.en
Type of ItemPeer-Reviewed Journal Publicationen
Type of ItemΔημοσίευση σε Περιοδικό με Κριτέςel
Licensehttp://creativecommons.org/licenses/by-nc-nd/4.0/en
Date of Item2025-03-17-
Date of Publication2025-
SubjectBackstepping controlen
Subjecthyperbolic PDEsen
Subjectlarge-scale systemsen
SubjectPDE continuaen
Bibliographic CitationJ.-P. Humaloja and N. Bekiaris-Liberis, "Stabilization of a class of large-scale systems of linear hyperbolic PDEs via continuum approximation of exact backstepping kernels," 2025. en

Available Files

Services

Statistics