URI | http://purl.tuc.gr/dl/dias/6647F743-7661-44C3-A774-F9FA65F37A01 | - |
Αναγνωριστικό | https://doi.org/10.26233/heallink.tuc.101351 | - |
Γλώσσα | el | - |
Μέγεθος | 2.2 megabytes | en |
Μέγεθος | 58 σελίδες | el |
Τίτλος | Ευφυείς τεχνικές δημιουργίας συνθετικών δεδομένων για εκπαίδευση μοντέλων μηχανικής μάθησης | el |
Δημιουργός | Agiomavritis Fotios | en |
Δημιουργός | Αγιομαυριτης Φωτιος | el |
Συντελεστής [Επιβλέπων Καθηγητής] | Karanasiou Eirini | en |
Συντελεστής [Επιβλέπων Καθηγητής] | Καρανασιου Ειρηνη | el |
Συντελεστής [Μέλος Εξεταστικής Επιτροπής] | Doitsidis Eleftherios | en |
Συντελεστής [Μέλος Εξεταστικής Επιτροπής] | Δοιτσιδης Ελευθεριος | el |
Συντελεστής [Μέλος Εξεταστικής Επιτροπής] | Panagiotis Trahanias | en |
Συντελεστής [Μέλος Εξεταστικής Επιτροπής] | Παναγιώτης Τραχανιάς | el |
Εκδότης | Πολυτεχνείο Κρήτης | el |
Εκδότης | Technical University of Crete | en |
Εκδότης | Hellenic Army Academy | en |
Εκδότης | Στρατιωτική Σχολή Ευελπίδων | el |
Ακαδημαϊκή Μονάδα | Technical University of Crete::School of Production Engineering and Management | en |
Ακαδημαϊκή Μονάδα | Πολυτεχνείο Κρήτης::Σχολή Μηχανικών Παραγωγής και Διοίκησης | el |
Περίληψη | Η απόκτηση επαρκών δεδομένων για την εκμάθηση αλγορίθμων μηχανικής ή βαθιάς μάθησης είναι πάντα ένα ζητούμενο το οποίο απασχολεί τον ερευνητικό αλλά και τον εταιρικό χώρο, παρόλα αυτά δεν είναι πάντοτε δυνατό να συμβεί. Υπάρχουν τομείς όπως ο στρατιωτικός, ο ιατρικός και άλλοι όπου είναι πιθανό να μην έχουμε την δυνατότητα συλλογής επαρκών δεδομένων, είτε εξαιτίας α-δειών χρήσης και προσωπικών δεδομένων είτε λόγω γενικότερης έλλειψης πραγματικών μετρήσεων σε αυτούς τους νευραλγικούς χώρους. Στην παρούσα μεταπτυχιακή διατριβή αναλύονται τεχνικές δημιουργίας συνθετικών δεδομένων που μπορούν να έχουν σημαντικά αποτελέσματα στην εκμάθη-ση αλγορίθμων όταν δεν διαθέτουμε αρκετά πραγματικά δεδομένα. Ο χειρισμός των τεχνικών δια-φοροποιείται όταν θέλουμε να δημιουργήσουμε συνθετικές εικόνες ή συνθετικές συμβολοσειρές α-ντίστοιχα, με την πρώτη κατηγορία να έχει μεγάλες υπολογιστικές απαιτήσεις και σύνθετες μεθό-δους. Για την δημιουργία συνθετικών εικόνων παρουσιάζονται μοντέλα διάχυσης (Diffusion) τα ο-ποία είναι ήδη προ-εκπαιδευμένα (pre-trained) με σκοπό να γίνει μεταφορά μάθησης (transfer learn-ing) πάνω σε συγκεκριμένα δεδομένα που θέλουμε για τα δικά μας αποτελέσματα. Βασικό στοιχείο της εργασίας είναι οι τεχνικές που χρησιμοποιούνται να εμπίπτουν στις αρχές του frugal learning και να μην χρειάζονται μεγάλο όγκο δεδομένων και υπολογιστική ισχύ. Επιπλέον, αναλύονται τεχνι-κές για την δημιουργία συνθετικών δεδομένων συμβολοσειρών και συγκεκριμένα συμβολοσειρών GPS με σκοπό την εκπαίδευση και τη δοκιμή συστημάτων πρόβλεψης παραπλάνησης (spoofing). Στα πλαίσια της παρούσας εργασίας, έχει δημιουργηθεί πειραματικό σύστημα πρόβλεψης spoofing με σκοπό να αποκτήσουμε μια πιο ρεαλιστική οπτική πάνω στο θέμα και να γίνει testing των συνθε-τικών δεδομένων που δημιουργήθηκαν. | el |
Τύπος | Μεταπτυχιακή Διατριβή | el |
Τύπος | Master Thesis | en |
Άδεια Χρήσης | http://creativecommons.org/licenses/by/4.0/ | en |
Ημερομηνία | 2024-10-23 | - |
Ημερομηνία Δημοσίευσης | 2024 | - |
Θεματική Κατηγορία | Spoofing detection | en |
Θεματική Κατηγορία | UAV | en |
Θεματική Κατηγορία | Deep learning | en |
Θεματική Κατηγορία | Machine learning | en |
Θεματική Κατηγορία | Generative AI | en |
Βιβλιογραφική Αναφορά | Φώτιος Αγιομαυρίτης, "Ευφυείς τεχνικές δημιουργίας συνθετικών δεδομένων για εκπαίδευση μοντέλων μηχανικής μάθησης", Μεταπτυχιακή Διατριβή, Σχολή Μηχανικών Παραγωγής και Διοίκησης, Πολυτεχνείο Κρήτης, Στρατιωτική Σχολή Ευελπίδων, Χανιά, Ελλάς, 2024 | el |