Institutional Repository [SANDBOX]
Technical University of Crete
EN  |  EL

Search

Browse

My Space

Development of a cardiovascular disease monitoring system

Katsoupis Evangelos

Simple record


URIhttp://purl.tuc.gr/dl/dias/626FCEE9-404E-472A-96CD-F0A874CB2DB4-
Identifierhttps://doi.org/10.26233/heallink.tuc.100510-
Languageen-
Extent8.8 megabytesen
Extent89 pagesen
TitleDevelopment of a cardiovascular disease monitoring systemen
TitleΑνάπτυξη συστήματος επιτήρησης για καρδιολογικές παθήσειςel
CreatorKatsoupis Evangelosen
CreatorΚατσουπης Ευαγγελοςel
Contributor [Thesis Supervisor]Zervakis Michailen
Contributor [Thesis Supervisor]Ζερβακης Μιχαηλel
Contributor [Committee Member]Petrakis Evripidisen
Contributor [Committee Member]Πετρακης Ευριπιδηςel
Contributor [Committee Member]Lagoudakis Michailen
Contributor [Committee Member]Λαγουδακης Μιχαηλel
PublisherΠολυτεχνείο Κρήτηςel
PublisherTechnical University of Creteen
Academic UnitTechnical University of Crete::School of Electrical and Computer Engineeringen
Academic UnitΠολυτεχνείο Κρήτης::Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστώνel
Content SummaryDeveloping of an open-source, multi-sensor, portable system with real-time preprocessing, user-friendly monitoring, and a post-processing deep learning-based arrhythmia detector with related ECG features. Hardware used: Raspberry Pi 4, Movesense Medical, Whaveshare 7.9 touch LCDen
Content SummaryΟι καρδιοαγγειακές παθήσεις είναι η κύρια αιτία θανάτου παγκοσμίως. Φορητά συστήματα χρησιμοποιούνται όλο και περισσότερο για την πραγματική απόκτηση και ανάλυση βιοσημάτων του ανθρώπινου σώματος. Σε αυτό το πλαίσιο, τέτοια συστήματα έχουν υιοθετηθεί για την παρακολούθηση των καρδιοαγγειακών παθήσεων, δείχνοντας δυνατότητες για μη επεμβατική διάγνωση. Ωστόσο, τα εν λόγω συστήματα είτε βασίζονται σε πολυκριτήριες μεθόδους, οι οποίες δεν βασίζονται σε δεδομένα, είτε είναι εμπορικά προϊόντα με περιορισμένη πρόσβαση στην αξιολόγηση των επιδόσεων. Η διπλωματική αυτή εργασία, προτείνει ένα ανοικτού τύπου κώδικα, πολυαισθητηριακό, φορητό σύστημα, φιλικό προς τον χρήστη κάνοντας ποιο εύκολη την παρακολούθηση και ανιχνευτή αρρυθμιών βασισμένο σε μοντέλο βαθιάς μάθησης, εκπαιδευμένο σε χαρακτηριστικά ηλεκτροκαρδιογραφήματος (ΗΚΓ). Γίνεται χρήση της συσκευής Movesense Medical, που τοποθετημένη σε ζώνη στήθους, είναι ικανή να καταγράφει ιατρικής ποιότητας, μονοκαναλικό ΗΚΓ σε διάφορους ρυθμούς δειγματοληψίας. Το Raspberry Pi 4 χρησιμεύει ως πλατφόρμα επεξεργασίας, παρέχοντας την απαραίτητη υπολογιστική ισχύ για την επεξεργασία σημάτων και την επικοινωνία με τη συσκευή. Για να πραγματοποιηθεί η επικοινωνία με τον αισθητήρα, αναπτύχθηκε μια βοηθητική βιβλιοθήκη και για να δημιουργηθεί το γραφικό περιβάλλον για την διεπαφή χρήστη με, την πλατφόρμα επεξεργασίας και την συσκευή καταγραφής έγινε χρήση της βιβλιοθήκης Dash. Διάφοροι αλγόριθμοι χρησιμοποιήθηκαν και αξιολογήθηκαν για την επεξεργασία του σήματος και την ανίχνευση χαρακτηριστικών μορφολογίας ΗΚΓ, όπως παλμοί R, τα χρονικά διαστήματα RR, η εκτίμηση αναπνοής που προκύπτει από το ΗΚΓ, ο καρδιακός ρυθμός και διάφοροι δείκτες μεταβλητότητας αυτού. Τα εξαγόμενα μορφολογικά χαρακτηριστικά συνδυάστηκαν με αναπαραστάσεις χρόνου-συχνότητας (που προέρχονται από τoν συνεχή μετασχηματισμό με wavelet - CWT) για την εκπαίδευση ενός συνελικτικού νευρωνικού δικτύου για την ανίχνευση τύπων αρρυθμιών σύμφωνα με τα πρότυπα της Ένωσης για την Πρόοδο των Ιατρικών Οργάνων. Η Βάση Δεδομένων MIT-BIH Arrhythmia χρησιμοποιήθηκε για την εκπαίδευση του μοντέλου ανίχνευσης, χρησιμοποιώντας και συγκρίνοντας διάφορες τεχνικές επεξεργασίας σήματος και διαφορετικά κύματα CWT. Τα αποτελέσματα δείχνουν ότι η προεπεξεργασία των σημάτων της βάσης δεδομένων με φίλτρα μέσης τιμής, ακολουθούμενα από φίλτρο notch, και η χρήση της μητρικής κύματος Gaussian 4 (GAUS4), παρήγαγαν υψηλή συνολική ακρίβεια και μετρική F1 για διάφορες κατηγορίες (SVEB - 80.75%, VEB - 93.90%), υπερβαίνοντας αυτά που αναφέρονται σε παρόμοιες μελέτες, γίνοντας αρωγός στην ακριβή και έγκαιρη παρέμβαση στην παρακολούθηση της καρδιοαγγειακής υγείας.el
Type of ItemΔιπλωματική Εργασίαel
Type of ItemDiploma Worken
Licensehttp://creativecommons.org/licenses/by-nc/4.0/en
Date of Item2024-07-29-
Date of Publication2024-
SubjectCardiovascular diseasesen
SubjectPortable systemsen
SubjectECG en
SubjectMedical ECGen
SubjectNon-invasive diagnosticsen
SubjectDeep Learning-based arrhythmia detectoren
SubjectMLII ECGen
SubjectSignal processingen
SubjectECG-derived respirationen
SubjectContinuous wavelet transform (CWT)en
SubjectBLEen
SubjectECG morphological featuresen
SubjectDeep learningen
SubjectSignal processingen
Bibliographic CitationEvangelos Katsoupis, "Development of a cardiovascular disease monitoring system", Diploma Work, School of Electrical and Computer Engineering, Technical University of Crete, Chania, Greece, 2024en
Bibliographic CitationΕυάγγελος Κατσούπης, "Ανάπτυξη συστήματος επιτήρησης για καρδιολογικές παθήσεις", Διπλωματική Εργασία, Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών, Πολυτεχνείο Κρήτης, Χανιά, Ελλάς, 2024el

Available Files

Services

Statistics