Ιδρυματικό Αποθετήριο [SANDBOX]
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Ενισχυτική μάθηση στην αυτόνομη οδήγηση, μια συγκριτική αξιολόγηση

Matsioris Georgios

Απλή Εγγραφή


URIhttp://purl.tuc.gr/dl/dias/0213210D-6E8B-42AB-91D3-EA9C93848998-
Αναγνωριστικόhttps://doi.org/10.26233/heallink.tuc.100493-
Γλώσσαel-
Μέγεθος4.1 megabytesen
Μέγεθος77 σελίδεςel
ΤίτλοςΕνισχυτική μάθηση στην αυτόνομη οδήγηση, μια συγκριτική αξιολόγησηel
ΤίτλοςReinforcement learning algorithms in autonomous driving, a comparitive evaluationen
ΔημιουργόςMatsioris Georgiosen
ΔημιουργόςΜατσιωρης Γεωργιοςel
Συντελεστής [Επιβλέπων Καθηγητής]Doitsidis Eleftheriosen
Συντελεστής [Επιβλέπων Καθηγητής]Δοιτσιδης Ελευθεριοςel
Συντελεστής [Μέλος Εξεταστικής Επιτροπής]Papamichail Ioannisen
Συντελεστής [Μέλος Εξεταστικής Επιτροπής]Παπαμιχαηλ Ιωαννηςel
Συντελεστής [Μέλος Εξεταστικής Επιτροπής]Ipsakis Dimitriosen
Συντελεστής [Μέλος Εξεταστικής Επιτροπής]Ιψακης Δημητριοςel
ΕκδότηςΠολυτεχνείο Κρήτηςel
ΕκδότηςTechnical University of Creteen
Ακαδημαϊκή ΜονάδαTechnical University of Crete::School of Production Engineering and Managementen
Ακαδημαϊκή ΜονάδαΠολυτεχνείο Κρήτης::Σχολή Μηχανικών Παραγωγής και Διοίκησηςel
ΠερίληψηΣτόχος της παρούσας εργασίας είναι να αναπτυχθεί ένα μεθοδολογικό πλαίσιο που θα βοηθά στην ανάπτυξη αυτόνομων πρακτόρων για την καθοδήγηση ηλεκτρικών οχημάτων με δυνατότητες αυτόνομης πλοήγησης. Για την ανάπτυξη του συγκεκριμένου πλαισίου, γίνεται χρήση του μοντέλου ενός ηλεκτρικού αυτοκινήτου πόλης που έχει τη δυνατότητα να φέρει πλήθος διαφορετικών αισθητήρων. Στα πλαίσια της εργασίας, αρχικά εξελίσσεται ένα προσομοιωμένο μοντέλο που έχει αναπτυχθεί σε παλαιότερη εργασίας. Η λειτουργικότητα του μοντέλου δοκιμάζεται σε ένα προσομοιωμένο περιβάλλον βασισμένο στο λογισμικό CARLA με τη χρήση ενός ειδικά κατασκευασμένου περιβάλλοντος τύπου GYM. Έπειτα αναπτύσσονται αυτόνομοι πράκτορες που έχουν την δυνατότητα να καθοδηγήσουν το μοντέλο του οχήματος, έτσι ώστε να ακολουθήσει ένα προδιαγεγραμμένο μονοπάτι μέσα σε αστικό περιβάλλον. Η διαδικασία βασίζεται στη χρήση του αλγορίθμου A* για την παραγωγή της επιθυμητής τροχιάς και στη συνέχεια τη χρήση των σχετικών δεδομένων για την εκπαίδευση των αυτόνομων πρακτόρων. Για την εκπαίδευση των πρακτόρων χρησιμοποιούνται δύο διαφορετικοί αλγόριθμοι ενισχυτικής μάθησης και πραγματοποιείται συγκριτική μελέτη των αποτελεσμάτων.el
ΠερίληψηThe objective of this thesis is to develop a methodological framework that facilitates the development of autonomous agents for guiding electric vehicles with autonomous navigation capabilities. To develop this framework, we utilize the model of an urban electric car equipped with a variety of sensors. Initially, a simulated model from a previous study is enhanced. The functionality of this model is tested in a simulated environment based on the CARLA software using a specially designed GYM environment. Subsequently, autonomous agents are developed to guide the vehicle model along a predetermined path in an urban setting. This process relies on the A* algorithm to generate the desired trajectory, followed by using the corresponding data to train the autonomous agents. Two different reinforcement learning algorithms are employed to train the agents, and a comparative study of the results is conducted.en
ΤύποςΔιπλωματική Εργασίαel
ΤύποςDiploma Worken
Άδεια Χρήσηςhttp://creativecommons.org/licenses/by/4.0/en
Ημερομηνία2024-07-25-
Ημερομηνία Δημοσίευσης2024-
Θεματική ΚατηγορίαΑυτόνομη πλοήγηση αυτοκινήτου πόληςel
Βιβλιογραφική ΑναφοράΓεώργιος Ματσιώρης, "Ενισχυτική μάθηση στην αυτόνομη οδήγηση, μια συγκριτική αξιολόγηση", Διπλωματική Εργασία, Σχολή Μηχανικών Παραγωγής και Διοίκησης, Πολυτεχνείο Κρήτης, Χανιά, Ελλάς, 2024el
Βιβλιογραφική ΑναφοράGeorgios Matsioris, "Reinforcement learning algorithms in autonomous driving, a comparitive evaluation", Diploma Work, School of Production Engineering and Management, Technical University of Crete, Chania, Greece, 2024en

Διαθέσιμα αρχεία

Υπηρεσίες

Στατιστικά