Institutional Repository [SANDBOX]
Technical University of Crete
EN  |  EL

Search

Browse

My Space

Analysis of magnetoencephalographic signals from children with reading difficulties using realistic head modeling and machine learning.

Dourida Maria-Aikaterini

Simple record


URIhttp://purl.tuc.gr/dl/dias/377C8AB5-DB8B-4022-90FC-D711DAA126CB-
Identifierhttps://doi.org/10.26233/heallink.tuc.100268-
Languageen-
Extent117 pagesen
Extent5 megabytesen
TitleAnalysis of magnetoencephalographic signals from children with reading difficulties using realistic head modeling and machine learning. en
TitleΑνάλυση μαγνητοεγκεφαλογραφήματος σε παιδιά με αναγνωστικές δυσκολίες με χρήση ρεαλιστικών μοντέλων κεφαλής και μηχανικής μάθησης.el
CreatorDourida Maria-Aikaterinien
CreatorΔουριδα Μαρια-Αικατερινηel
Contributor [Thesis Supervisor]Zervakis Michailen
Contributor [Thesis Supervisor]Ζερβακης Μιχαηλel
Contributor [Committee Member]Liavas Athanasiosen
Contributor [Committee Member]Λιαβας Αθανασιοςel
Contributor [Committee Member]Christopoulos Dionysiosen
Contributor [Committee Member]Χριστοπουλος Διονυσιοςel
PublisherΠολυτεχνείο Κρήτηςel
PublisherTechnical University of Creteen
Academic UnitTechnical University of Crete::School of Electrical and Computer Engineeringen
Academic UnitΠολυτεχνείο Κρήτης::Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστώνel
Content SummaryReading Difficulties are the most common type of learning disability, often manifesting at a young age, including deficits in reading comprehension, word decoding, orthography and phonology. Magnetoencephalography (MEG) is a neuroimaging technique that captures brain activity in millisecond precision. The source analysis of MEG recordings can provide an estimation of the underlying brain activity without being affected by volume conduction effects. An appropriate base to investigate functional connectivity patterns is thus established. In this thesis, resting state MEG recordings from 40 Non-Impaired (NI) children and 26 children with Reading Difficulties (RD) are analyzed with the goal to estimate the intra-, inter- and dominant frequency-based brain interactions and successfully classify them between NI and RD groups. Initially, source location is performed using beamforming techniques and realistic head modeling. Using intra-frequency and inter-frequency phase synchronization metrics on a time-varying fashion, source interactions are estimated. The dominant frequency coupling is also estimated to further reveal the maximum coupling source interaction. Symbolic time-series and their complexity index are then estimated. A comparison of the Inter-, Intra- and Dominant frequency approaches is conducted, by analysing the brain networks across brain regions, as well as their FCmstates. From the results, it is indicated that the dominant frequency (δ-β) provides a more accurate depiction of the differences between groups across brain regions and FCmstates. By employing the machine learning approaches k-Nearest Neighbors (κ-ΝΝ) and Support Vector Machine (SVM) on the dominant frequency, a high classification performance (Accuracy > 96 %) is observed. Highly accurate classification is also achieved across all the examined phase synchronization metrics. The present thesis thus paves the way for future non-invasive diagnostic systems for identifying reading difficulties in childhood.en
Content SummaryΟι Δυσκολίες στην Ανάγνωση είναι ο πιο συνηθισμένος τύπος μαθησιακής δυσκολίας, οι οποίες εμφανίζονται συχνά σε νεαρή ηλικία. Τα συμπτώματα που παρουσιάζονται αφορούν ελλείψεις στην κατανόηση και ανάγνωση κειμένων, στην αποκωδικοποίηση των λέξεων, στην ορθογραφία και στη φωνολογία. Η Μαγνητοεγκεφαλογραφία (MEG) είναι μια νευροεικονική τεχνική που απαθανατίζει τη δραστηριότητα του εγκεφάλου με ακρίβεια χιλιοστών του δευτερολέπτου. Η ανάλυση των πηγών των καταγεγραμμένων σημάτων MEG μπορεί να παρέχει μια ακριβή εκτίμηση της υποκείμενης δραστηριότητας του εγκεφάλου, χωρίς να επηρεάζεται από τις επιδράσεις της αγωγιμότητας μεταξύ των ιστών. Έτσι δημιουργείται μια κατάλληλη βάση για τη μελέτη των μοτίβων της λειτουργικής συνδεσιμότητας του εγκεφάλου. Σε αυτή τη διπλωματική, μέσα από την ανάλυση των, καταγεγραμμένων σε κατάσταση ηρεμίας, σημάτων MEG από 40 παιδιά υγιή(NI) και 26 παιδιά με δυσκολίες στην ανάγνωση (RD), εκτιμώνται οι αλληλεπιδράσεις μεταξύ περιοχών του εγκεφάλου σε προσεγγίσεις εσωτερικής, ενδιάμεσης και την κυρίαρχης συχνότητας, με τελικό σκοπό την επιτυχή κατηγοριοποίηση των ατόμων μεταξύ των ομάδων NI και RD. Αρχικά, γίνεται ο εντοπισμός των πηγών, χρησιμοποιώντας τεχνικές beamforming και χρήση ρεαλιστικού μοντέλου κεφαλής. Στην συνέχεια, με τη χρήση μετρικών συγχρονισμού φάσης, εκτιμώνται οι αλληλεπιδράσεις των πηγών σε εσωτερική και ενδιάμεση συχνότητα σε μεταβλητό χρόνο. Εκτιμάται επίσης, η κυρίαρχη συχνότητα για να αποκαλυφθεί περαιτέρω η μέγιστη αλληλεπίδραση των πηγών. Τέλος, κατασκευάζονται οι συμβολικές χρονοσειρές και υπολογίζεται ο δείκτης πολυπλοκότητάς του δικτύου. Πραγματοποιείται σύγκριση των προσεγγίσεων Ενδιάμεσης, Εσωτερικής και Κυρίαρχης συχνότητας, αναλύοντας τα εγκεφαλικά δίκτυα σε όλες τις περιοχές του εγκεφάλου, καθώς και στις καταστάσεις λειτουργικής συνδεσιμότητας(fcmstates). Από τα αποτελέσματα, φαίνεται ότι η κυρίαρχη συχνότητα (δ-β) παρέχει μια πιο ακριβή απεικόνιση των διαφορών μεταξύ των ομάδων σε όλες τις περιοχές του εγκεφάλου και τις καταστάσεις. Με τη χρήση αλγορίθμων μηχανικής μάθησης K-Κοντινότεροι Γείτονες (κ-ΝΝ) και Μηχανών Διανυσμάτων Υποστήριξης (SVM) στην κυρίαρχη συχνότητα, παρατηρείται υψηλή απόδοση κατηγοριοποίησης (Ακρίβεια > 96%). Επιτυγχάνεται επίσης υψηλή ακρίβεια κατηγοριοποίησης σε όλες τις εξεταζόμενες μετρικές συγχρονισμού φάσης. Η παρούσα διπλωματική θέτει έτσι τις βάσεις για μελλοντικά μη επεμβατικά συστήματα διάγνωσης, για την ανίχνευση δυσκολιών στην ανάγνωση στην παιδική ηλικία.el
Type of ItemΔιπλωματική Εργασίαel
Type of ItemDiploma Worken
Licensehttp://creativecommons.org/licenses/by/4.0/en
Date of Item2024-07-09-
Date of Publication2024-
SubjectReading difficultiesen
SubjectMagnetoencephalographyen
SubjectSource analysisen
SubjectDynamic functional connectivityen
SubjectNetwork microstatesen
SubjectMachine learningen
Bibliographic CitationMaria-Aikaterini Dourida, "Analysis of magnetoencephalographic signals from children with reading difficulties using realistic head modeling and machine learning.", Diploma Work, School of Electrical and Computer Engineering, Technical University of Crete, Chania, Greece, 2024en
Bibliographic CitationΜαρία-Αικατερίνη Δουρίδα, "Ανάλυση μαγνητοεγκεφαλογραφήματος σε παιδιά με αναγνωστικές δυσκολίες με χρήση ρεαλιστικών μοντέλων κεφαλής και μηχανικής μάθησης.", Διπλωματική Εργασία, Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών, Πολυτεχνείο Κρήτης, Χανιά, Ελλάς, 2024el

Available Files

Services

Statistics