Ιδρυματικό Αποθετήριο [SANDBOX]
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

A nonlinear heat equation arising from automated-vehicle traffic flow models

Theodosis Dionysios, Karafyllis Iason, Titakis Georgios, Papamichail Ioannis, Papageorgiou Markos

Πλήρης Εγγραφή


URI: http://purl.tuc.gr/dl/dias/90C153F1-DF79-40F6-BE29-1EFDE2F353B6
Έτος 2024
Τύπος Δημοσίευση σε Περιοδικό με Κριτές
Άδεια Χρήσης
Λεπτομέρειες
Βιβλιογραφική Αναφορά D. Theodosis, I. Karafyllis, G. Titakis, I. Papamichail and M. Papageorgiou, “A nonlinear heat equation arising from automated-vehicle traffic flow models,” J. Comput. Appl. Math., 2023, doi: 10.1016/j.cam.2023.115443. https://doi.org/10.1016/j.cam.2023.115443
Εμφανίζεται στις Συλλογές

Περίληψη

In this paper, a new nonlinear heat equation is studied that arises as a model of the collective behaviour of automated vehicles. The properties of the solutions of this equation are studied by introducing the appropriate notion of a weak solution that requires certain entropy-like conditions. To obtain an approximation of the solution of the nonlinear heat equation, a new conservative first-order finite difference scheme is proposed that respects the corresponding entropy conditions, and certain links between the weak solution and the numerical scheme are provided. Finally, a traffic simulation scenario and a comparison with the Lighthill–Whitham–Richards (LWR) model are provided, illustrating the benefits of the use of automated vehicles.

Διαθέσιμα αρχεία

Υπηρεσίες

Στατιστικά