Ιδρυματικό Αποθετήριο [SANDBOX]
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Deep reinforcement learning with implicit imitation for lane-free autonomous driving

Chrysomallis Iason, Troullinos Dimitrios, Chalkiadakis Georgios, Papamichail Ioannis, Papageorgiou Markos

Πλήρης Εγγραφή


URI: http://purl.tuc.gr/dl/dias/10F634AF-6326-49E0-BD3F-78D66823D370
Έτος 2023
Τύπος Πλήρης Δημοσίευση σε Συνέδριο
Άδεια Χρήσης
Λεπτομέρειες
Βιβλιογραφική Αναφορά I. Chrysomallis, D. Troullinos, G. Chalkiadakis, I. Papamichail and M. Papageorgiou, “Deep reinforcement learning with implicit imitation for lane-free autonomous driving,” in ECAI 2023 - Proc. of the 26th European Conference on Artificial Intelligence, vol. 372, Frontiers in Artificial Intelligence and Applications, K. Gal, A. Nowé, G. J. Nalepa, R. Fairstein, R. Rădulescu, Eds., Amsterdam, The Netherlands: IOS Press, 2023, pp. 461-468, doi: 10.3233/faia230304. https://doi.org/10.3233/FAIA230304
Εμφανίζεται στις Συλλογές

Περίληψη

Implicit imitation assumes that learning agents observe only the state transitions of an agent they use as a mentor, and try to recreate them based on their own abilities and knowledge of their environment. In this paper, we put forward a deep implicit imitation Q-network (DIIQN) model, which incorporates ideas from three well-known Deep Q-Network (DQN) variants. As such, we enable a novel implicit imitation method for online, model-free deep reinforcement learning. Our thorough experimentation in the complex environment of the emerging lane-free traffic paradigm, verifies the benefits of our approach. Specifically, we show that deep implicit imitation RL dramatically accelerates the learning process when compared to a “vanilla” DQN method; and, unlike explicit imitation reinforcement learning, it is able to outperform mentor performance without resorting to additional information, such as the mentor’s actions.

Διαθέσιμα αρχεία

Υπηρεσίες

Στατιστικά